Neuropeptide amidation in Drosophila: separate genes encode the two enzymes catalyzing amidation.
نویسندگان
چکیده
In vertebrates, the two-step peptide alpha-amidation reaction is catalyzed sequentially by two enzymatic activities contained within one bifunctional enzyme called PAM (peptidylglycine alpha-amidating mono-oxygenase). Drosophila head extracts contained both of these PAM-related enzyme activities: a mono-oxygenase (PHM) and a lyase (PAL). However, no bifunctional PAM protein was detected. We identified cDNAs encoding an active mono-oxygenase that is highly homologous to mammalian PHM. PHM-like immunoreactivity was found within diverse larval tissues, including the CNS, endocrine glands, and gut epithelium. Northern and Western blot analyses demonstrate RNA and protein species corresponding to the cloned PHM, but not to a bifunctional PAM, leading us to predict the existence of separate PHM and PAL genes in Drosophila. The Drosophila PHM gene displays an organization of exons that is highly similar to the PHM-encoding portion of the rat PAM gene. Genetic analysis was consistent with the prediction of separate PHM and PAL gene functions in Drosophila: a P element insertion line containing a transposon within the PHM transcription unit displayed strikingly lower PHM enzyme levels, whereas PAL levels were increased slightly. The lethal phenotype displayed by the dPHM P element insertion indicates a widespread essential function. Reversion analysis indicated that the lethality associated with the insertion chromosome likely is attributable to the P element insertion. These combined data indicate a fundamental evolutionary divergence in the genes coding for critical neurotransmitter biosynthetic enzymes: in Drosophila, the two enzyme activities of PAM are encoded by separate genes.
منابع مشابه
Multiple amidated neuropeptides are required for normal circadian locomotor rhythms in Drosophila.
In Drosophila, the amidated neuropeptide pigment dispersing factor (PDF) is expressed by the ventral subset of lateral pacemaker neurons and is required for circadian locomotor rhythms. Residual rhythmicity in pdf mutants likely reflects the activity of other neurotransmitters. We asked whether other neuropeptides contribute to such auxiliary mechanisms. We used the gal4/UAS system to create mo...
متن کاملIdentification and in vitro Analysis of the GatD/MurT Enzyme-Complex Catalyzing Lipid II Amidation in Staphylococcus aureus
The peptidoglycan of Staphylococcus aureus is characterized by a high degree of crosslinking and almost completely lacks free carboxyl groups, due to amidation of the D-glutamic acid in the stem peptide. Amidation of peptidoglycan has been proposed to play a decisive role in polymerization of cell wall building blocks, correlating with the crosslinking of neighboring peptidoglycan stem peptides...
متن کاملIdentification of the amidotransferase AsnB1 as being responsible for meso-diaminopimelic acid amidation in Lactobacillus plantarum peptidoglycan.
The peptidoglycan (PG) of Lactobacillus plantarum contains amidated meso-diaminopimelic acid (mDAP). The functional role of this PG modification has never been characterized in any bacterial species, except for its impact on PG recognition by receptors of the innate immune system. In silico analysis of loci carrying PG biosynthesis genes in the L. plantarum genome revealed the colocalization of...
متن کاملTungstophosphoric Acid Supported on Silica-encapsulated γ-Fe2O3 Nanoparticles Catalyzed Oxidative Amidation
We have used tungestophosphoric acid to catalyze oxidative amidation reaction from benzyl alcohols and methylarens with hydrochloride salts of amines. To achieve this purpose, modified magnetic nanoparticles (γ-Fe2O3@SiO2@H3PW12O40) were applied as catalyst and TBHP as external oxidant. After optimizing, different derivates of be...
متن کاملIdentification of Genetic Determinants and Enzymes Involved with the Amidation of Glutamic Acid Residues in the Peptidoglycan of Staphylococcus aureus
The glutamic acid residues of the peptidoglycan of Staphylococcus aureus and many other bacteria become amidated by an as yet unknown mechanism. In this communication we describe the identification, in the genome of S. aureus strain COL, of two co-transcribed genes, murT and gatD, which are responsible for peptidoglycan amidation. MurT and GatD have sequence similarity to substrate-binding doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 4 شماره
صفحات -
تاریخ انتشار 1997